"TouchScreen" project

Eduard Heidt, Jan Helber, Albert Dorn,
Alexander Irro and Cedric Pilot

Product Description V0.1
written by Albert Dorn

This documentation contains the product description of the project "TouchScreen TI6"

| V0.1 2006-11-1 | Initial Release

Powered by BTEX
generated at 22:01 on May 10, 2010

CONTENTS CONTENTS

Contents
1 Generals 1

2 Features
21 ERD.E.. ..
2.1.1 Debugger e
2.1.2 Assembler Editor L
2.1.3 ERI1 machine code compiler and uploader

2.2 ERI debugging without ERD.E.o oo

W W N NN =

2.2.1 Debugging with Hyperterminal

w

3 Examples
3.1 ERI debugging with ER.D.E. oo oo
3.2 ERI debugging with Hyperterminal 4

2 FEATURES

1 Generals

This decument descripes features of E.R.D.E. Ein fachstrechner Development Evironment,
the debugger implementation on the ARM development board and the on Java based com-

piler.

2 Features

2.1 E.R.D.E.

E.R.D.E. is a all in one solution for creating, debugging and uploading ER1 machine code.
Figure 1 shows the E.R.D.E. application. It is an application which is programmed in
C#. With ERDE.exe.config which is written in XML, the user can configure the serial

port connetion.

JRI=TE
File Edit #Assembler Debugger Options Help
=i «‘u @ W ©
Degister | Talue g4 ADD [RAM] R ;I
aC Dx0f£d g5 ZTORE [RAM] JRAM wird mit Z multipliziert
P Ox004s 856 LOLD [RAM] HE.
Reg3 0x0000 a7 LDD [RAM] FR.
b=t=3 3TORE [RAM] ;RAM wird mit 2 multipliziert ... 1nsgesamt wurde R4
89 LOAD #0x3 R
90 ADD [RAM] ;zu RAM wird SPALTES addiert
a1 STORE [EEY] :8palte und Zeile in KEY speichern
92 LOADL #CHE I
a3 STORE [IRQ] :IRD setzen
94 ZERD R
95 ﬂ} JUMFPZ INIT sSprung zu INIT
95 SPALTE4:
97 LoOADL #BIT4 I
98 3TORE [COL] ;BPALTE4 Spannung anlegen
a9 Loal [ROW] ;Zeilen muslesen
100 ATID #BROWAND -
101 JUMFZ SPALTES WMenn auf keiner Zeile Strow gewessen wird =:> nichst
10z 3TORE [RAM] ;In RAM wird Zeilennummer geschriehen
103 ADD [RAM] PR
104 ITORE [RAM] JBAM wird mit 2 multipliziert
105 LoaD [RAM] -
106 LD [RAM] PR
107 3TORE [RAM] ;RAM wird mit 2 multipliziertc
108 LOALD [RAM] PR
109 ADD [RAM] R
11n oToDE Toaml s DAM _rrircl wait P warltGiwmldimd ot Avomooort rriirclo 'Dn;l
=l
-]
Online H

Figure 1: E.R.D.E. with enabled debug

2 FEATURES 21 E.R.D.E.

2.1.1 Debugger

Required: Serial port, Windows XP, Net2.0

Description: With the debugger feature in the E.R.D.E. you can enter any time, even
in the runtime of the ER1, into the debugging mode. In this mode you can clock
the ER1 manually with a button or a key shortcut. To use the debugging feature
correctly the user has to open the same assembler code file which is currently used
in the ER1. After you open an assembler code file, a clear text field shows the code.
This text field also has a graphical arrow which shows the user exactly the code the
ER. is going to execute in the next cycle. Additionally E.R.D.E. shows the most
important contents of the ER1 registers and status information like the accumulator
or program counter in a list box. Of course the user can leave the debugging mode
at any time.

2.1.2 Assembler Editor

Required: Windows XP, Net2.0

Description: E.R.D.E. does not only open already existing assembler code. Users can
also use E.R.D.E. to edit, or to develop their own assembler code for the ERI.
The syntax highlighting which is specially adapted for the ER1 allows the user to
write even bigger code without loosing the overview. It is also possible for users to
add highlighting for their own keywords just by changing some values in a xml file.
Additionally, E.R.D.E. implements features such as <Undo>, <Save>, <Copy> or
<Paste> like every good text editor does.

2.1.3 ER1 machine code compiler and uploader

Required: Serial port, Windows XP, Net2.0

Description: With the all-in-one solution E.R.D.E. users can compile and upload as-
sembler code directly to the ER1. over the serial port. It doesn’t matter if the
assembler code is created in the E.R.D.E. or in another editor. An own designed
compiler which is developed in Java, compiles the assembler code into machine code
for the ER1. This compiler also throws error messages which are displayed via a
message box. This error message box displays a short description and the exact
position in the assembler code where the error occured. After the compilation ends
successfully, the user can upload the created machine code to the ER1 ROM by
using a boot loader routine. Some parts of this feature havent been tested. Tested
parts are the communication between the E.R.D.E. and the ARM. We weren’t able
to write data from the ARM into the ER1 registers which are also used for the
bootloader.

3 EXAMPLES 2.2 ERI debugging without E.R.D.E.

2.2 ERI1 debugging without E.R.D.E.

A module which is easy to implement in any ARM programm, which doesn’t use serial
port <UART1>. This module acts like a interface for users who can communicate with
it over programms like Hyperterminal as you can see in figure 2.

“g a - HyperTerminal i [m]
Datei Bearbeiten Ansicht Anrufen Obertragung 2

Debug_ON
PC=0x0045
AC=0x0000
Reg3=0x0000
Takt
PC=0x0046
AC=0x0f T4
Tak t=0x0000
PC=0x0047
AC=0x0000
Tak t=0x=0000
PC=0x0045
AC=0x0000
Tak t=0x0000
PC=0x0046
AC=0x0f T4
Tak t=0x0000
PC=0x0047
AC=0x0000
Reg3=0x0000

w

[verbunden 00:03:15 |amisT 9600 8-h-1 [RF [ROS5 [wom [Acfzeichnen [Druckerecho

Figure 2: Debugging with a Hyperterminal

2.2.1 Debugging with Hyperterminal

Required: Serial port, Hyperterminal

Description A logic which handles interrupts over the serial port makes it possible to
debug the ER1 within every program which is able to communicate over the serial
port. When ARM is receiving the data, e.g. to start the debug mode, it prints his
status informations and also registers from the ER1 back over his serial port. By
using this feature you are also able to clock the ER1 and switch its debug mode. A
list of output messages are listed in table 1.

3 Examples

For better understanding some of the features are described below in more detail by using
some example scenarios.

3 EXAMPLES 3.1 ERI debugging with E.R.D.E.

ARM output | Description
DEBUG _ON | Debugger online
DEBUG _OFF | Debugger offline

Takt The ER1 PC is inremented by one

AC The ACC register in the ER1

PC The PC register in the Erl

Reg3 The status register for the though screen

Table 1: ARM output over the Hyperterminal

3.1 ER1 debugging with E.R.D.E.

Scenario How to enter and exit the debug mode within the E.R.D.E.

1.

Otk WY

Connect the serial port COMO with the serial port <UART1> of the ARM7
evaluation board

Connect the ARM7 evaluation board with the power supply
Start the E.R.D.E. application
Upload the ER1 machine code into the ER1 ROM by using the boot loader

Open the same assembler code file which you compiled and uploaded into the
ER1

Click on the <Start Debugging> button over the menu <Debugger, Start
Debugger >

Now the ER1 doesn’t use his own clock. You can clock the ER1 by clicking
on the <Debug Step> button or over the menu <Debugger, Debug Step> or
with the very comfortable shortcut <F10>

To exit the debugging modus just click on the <Start Debugging> button over
the menu <Debugger, Start Debugger> again

3.2 ERI1 debugging with Hyperterminal

Scenario How to enter and exit the debug mode within the Hyperterminal

A

Connect the serial port COMO with the serial port UART1 of the ARM
Connect the ARM with the power supply

Start the Hyperterminal with 8 databits, no Parity, 1 Stop bit and 9600 baud
Make sure a working ER1 is already uploaded

To start debugging push the ’g’ key to start debugging

Now the E.R. doesn’t use his own clock. You can clock the E.R. by pushing

7n7

7. To exit the debugging modus just push the 'p’ key

8. A overview of the informaion on the hyperterminal you can see in table 1

	1 Generals
	2 Features
	2.1 E.R.D.E.
	2.1.1 Debugger
	2.1.2 Assembler Editor
	2.1.3 ER1 machine code compiler and uploader

	2.2 ER1 debugging without E.R.D.E.
	2.2.1 Debugging with Hyperterminal

	3 Examples
	3.1 ER1 debugging with E.R.D.E.
	3.2 ER1 debugging with Hyperterminal

