
"TouchScreen" project

Eduard Heidt, Jan Helber, Albert Dorn,

Alexander Irro and Cedric Pilot

Product Description V0.1

written by Albert Dorn

This documentation contains the product description of the project "TouchScreen TI6"

V0.1 2006-11-1 Initial Release

Powered by LATEX

generated at 22:01 on May 10, 2010

CONTENTS CONTENTS

Contents

1 Generals 1

2 Features 1

2.1 E.R.D.E. 1

2.1.1 Debugger . 2

2.1.2 Assembler Editor . 2

2.1.3 ER1 machine code compiler and uploader 2

2.2 ER1 debugging without E.R.D.E. 3

2.2.1 Debugging with Hyperterminal . 3

3 Examples 3

3.1 ER1 debugging with E.R.D.E. 4

3.2 ER1 debugging with Hyperterminal . 4

2

2 FEATURES

1 Generals

This decument descripes features of E.R.D.E.EinfachstrechnerDevelopmentEvironment,
the debugger implementation on the ARM development board and the on Java based com-

piler.

2 Features

2.1 E.R.D.E.

E.R.D.E. is a all in one solution for creating, debugging and uploading ER1 machine code.

Figure 1 shows the E.R.D.E. application. It is an application which is programmed in

C#. With ERDE.exe.con�g which is written in XML, the user can con�gure the serial

port connetion.

Figure 1: E.R.D.E. with enabled debug

1

2 FEATURES 2.1 E.R.D.E.

2.1.1 Debugger

Required: Serial port, Windows XP, Net2.0

Description: With the debugger feature in the E.R.D.E. you can enter any time, even

in the runtime of the ER1, into the debugging mode. In this mode you can clock

the ER1 manually with a button or a key shortcut. To use the debugging feature

correctly the user has to open the same assembler code �le which is currently used

in the ER1. After you open an assembler code �le, a clear text �eld shows the code.

This text �eld also has a graphical arrow which shows the user exactly the code the

ER. is going to execute in the next cycle. Additionally E.R.D.E. shows the most

important contents of the ER1 registers and status information like the accumulator

or program counter in a list box. Of course the user can leave the debugging mode

at any time.

2.1.2 Assembler Editor

Required: Windows XP, Net2.0

Description: E.R.D.E. does not only open already existing assembler code. Users can

also use E.R.D.E. to edit, or to develop their own assembler code for the ER1.

The syntax highlighting which is specially adapted for the ER1 allows the user to

write even bigger code without loosing the overview. It is also possible for users to

add highlighting for their own keywords just by changing some values in a xml �le.

Additionally, E.R.D.E. implements features such as <Undo>, <Save>, <Copy> or

<Paste> like every good text editor does.

2.1.3 ER1 machine code compiler and uploader

Required: Serial port, Windows XP, Net2.0

Description: With the all-in-one solution E.R.D.E. users can compile and upload as-

sembler code directly to the ER1. over the serial port. It doesn't matter if the

assembler code is created in the E.R.D.E. or in another editor. An own designed

compiler which is developed in Java, compiles the assembler code into machine code

for the ER1. This compiler also throws error messages which are displayed via a

message box. This error message box displays a short description and the exact

position in the assembler code where the error occured. After the compilation ends

successfully, the user can upload the created machine code to the ER1 ROM by

using a boot loader routine. Some parts of this feature havent been tested. Tested

parts are the communication between the E.R.D.E. and the ARM. We weren't able

to write data from the ARM into the ER1 registers which are also used for the

bootloader.

2

3 EXAMPLES 2.2 ER1 debugging without E.R.D.E.

2.2 ER1 debugging without E.R.D.E.

A module which is easy to implement in any ARM programm, which doesn't use serial

port <UART1>. This module acts like a interface for users who can communicate with

it over programms like Hyperterminal as you can see in �gure 2.

Figure 2: Debugging with a Hyperterminal

2.2.1 Debugging with Hyperterminal

Required: Serial port, Hyperterminal

Description A logic which handles interrupts over the serial port makes it possible to

debug the ER1 within every program which is able to communicate over the serial

port. When ARM is receiving the data, e.g. to start the debug mode, it prints his

status informations and also registers from the ER1 back over his serial port. By

using this feature you are also able to clock the ER1 and switch its debug mode. A

list of output messages are listed in table 1.

3 Examples

For better understanding some of the features are described below in more detail by using

some example scenarios.

3

3 EXAMPLES 3.1 ER1 debugging with E.R.D.E.

ARM output Description

DEBUG_ON Debugger online

DEBUG_OFF Debugger o�ine

Takt The ER1 PC is inremented by one

AC The ACC register in the ER1

PC The PC register in the Er1

Reg3 The status register for the though screen

Table 1: ARM output over the Hyperterminal

3.1 ER1 debugging with E.R.D.E.

Scenario How to enter and exit the debug mode within the E.R.D.E.

1. Connect the serial port COM0 with the serial port <UART1> of the ARM7

evaluation board

2. Connect the ARM7 evaluation board with the power supply

3. Start the E.R.D.E. application

4. Upload the ER1 machine code into the ER1 ROM by using the boot loader

5. Open the same assembler code �le which you compiled and uploaded into the

ER1

6. Click on the <Start Debugging> button over the menu <Debugger, Start

Debugger>

7. Now the ER1 doesn't use his own clock. You can clock the ER1 by clicking

on the <Debug Step> button or over the menu <Debugger, Debug Step> or

with the very comfortable shortcut <F10>

8. To exit the debugging modus just click on the <Start Debugging> button over

the menu <Debugger, Start Debugger> again

3.2 ER1 debugging with Hyperterminal

Scenario How to enter and exit the debug mode within the Hyperterminal

1. Connect the serial port COM0 with the serial port UART1 of the ARM

2. Connect the ARM with the power supply

3. Start the Hyperterminal with 8 databits, no Parity, 1 Stop bit and 9600 baud

4. Make sure a working ER1 is already uploaded

5. To start debugging push the 'g' key to start debugging

6. Now the E.R. doesn't use his own clock. You can clock the E.R. by pushing

'n'

7. To exit the debugging modus just push the 'p' key

8. A overview of the informaion on the hyperterminal you can see in table 1

4

	1 Generals
	2 Features
	2.1 E.R.D.E.
	2.1.1 Debugger
	2.1.2 Assembler Editor
	2.1.3 ER1 machine code compiler and uploader

	2.2 ER1 debugging without E.R.D.E.
	2.2.1 Debugging with Hyperterminal

	3 Examples
	3.1 ER1 debugging with E.R.D.E.
	3.2 ER1 debugging with Hyperterminal

